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Abstrac t  

We discuss from an operational point of view some fundamental concepts of the micro- 
scopic physical theories, with the aim of  providing a background for a successive 
investigation of the microscopic space-time structure. We consistently develop the 
remark that a frame of reference is determined by physical objects which may interact 
with the objects under investigation. As it is not clear that a state can be prepared by 
means of physical operations, we do not use the concept of physical state for the 
foundation of the theory. In our approach, the primitive concepts are the measurement 
procedures, following which one gets a numerical result, and the transformation pro- 
cedures, which have the aim of building a frame of reference. We discuss several rules 
which allow us to define new procedures in terms of  known procedures. The statistical 
laws of physics are formulated in terms of an order relation between measurement 
procedures, which defines also an equivalence relation. The equivalence classes of 
measurement procedures are called measurements. We define also equivalence classes 
of transformation procedures, called transformations. The mathematical structure of 
the set of measurements and of the set of transformations is discussed in detail. We 
consider measurements with an arbitrary finite number of  possible results, as this 
enables us to give a rigorous definition of compatibility. Finally, we point out  that all 
the physical theories necessarily contain ideal measurements and transformations which 
do not correspond to any known physical procedure. The introduction of these ideal 
objects permits a considerable simplification of the mathematical structure of  the 
theory, but reduces its physical content. 

1. In troduct ion  

The  p resen t  pape r  con t a in s  a d iscuss ion  o f  a general  s cheme  o f  phys ica l  
t h e o r y ,  w h i c h  has  b e e n  deve loped  as a p r e l imina ry  to an  inves t iga t ion  o f  the  
space- t ime s t ruc tu re ,  at  t he  mic roscop ic  level o f  e l e m e n t a r y  par t ic les .  This  
p r e l imina ry  s t u d y  is necessary  because  t he  i n t r o d u c t i o n  o f  the  f u n d a m e n t a l  
concep t s  o f  a phys ica l  t h e o r y  necessar i ly  impl ies  expl ic i t  or  impl i c i t  assump- 
t ions  o n  t he  s t ruc tu r e  o f  space- t ime.  The  sys temat i c  d iscuss ion  o f  t h e  space- 
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time structure will be given elsewhere. Here we only consider this argument 
in order to clarify our motivations. 

Our point of view will be operational (Bridgman, 1927), i.e. we shall try 
to define our primitive concepts in terms of physical operations. This point 
of view permits a clear approach to many fields of  natural sciences, it being 
almost unavoidable in microscopic physics as the microscopic objects are 
observed in a very indirect way, through complicated operations, which 
often imply refined technologies. In order to obtain a theory with a clear 
physical interpretation one has to introduce a set of primitive concepts 
directly related to the physical operations, while the other concepts (e.g. 
the concept of  a microscopic object or of  a space-time region) should be 
defined in terms of primitive concepts. These ideas are clearly explained in 
Giles (1970). 

It should be clear that we are not suggesting to eliminate from physical 
theories all concepts which have not a direct operational meaning. As we 
shall see, they are unavoidable and very useful. However, they should not 
be confused with the primitive concepts mentioned above and their rela- 
tions with the primitive concepts should be clearly understood. 

As the primitive concepts of  a theory have to be universal, they will not 
denote physical operations actually performed at a certain time in a certain 
place, but rather sets of  prescriptions, following which the experimenter can 
perform certain operations. These sets of prescriptions will be called 'pro- 
cedures'. They are the primitive concepts of  our theory and will be discussed 
in detail in Section 2. An 'experiment' is a set of  physical operations, actually 
performed following the instructions of  a procedure, in certain given space- 
time conditions specified by means of a frame of reference. 

Since the advent of relativity, it has been clear that a frame of reference 
has to be built by means of physical objects, e.g. rigid bodies, clocks or light 
rays. However, these physical objects are very often assumed to have strongly 
idealised properties. For instance, they are not allowed to interact directly 
with the physical system under investigation and their interaction with the 
measuring instruments is assumed to have a classical (non-quantum) nature. 
It is clear that the space-time structure of  a theory of  this kind is borrowed 
from some macroscopic theory, as classical physics, special relativity or 
general relativity. 

These assumptions on the physical nature of  the frames of reference can 
hardly be justified when we deal with very small distances and time intervals 
and we shall avoid them in our treatment. On the contrary, we shall con- 
sider the physical objects which define a frame of reference on the same 
footing as the physical system under investigation, namely we shall take 
into account their quantum nature, the physical limitations to their 
mechanical properties and so on. 

We shall use the term 'situation' in order to indicate those material objects 
which determine the space-time conditions of an experiment. In general, a 
situation cannot determine a frame of reference with absolute precision. For 
instance, as clearly discussed in Ferretti (1968), the position and the velocity 
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of a frame of reference can be determined exactly only by an object with 
infinite mass. It is conceivable that the physical properties of material 
objects impose some impassable limits to this precision and that the concepts 
of frame of  reference and of inhomogeneous Lorentz transformation have 
to be modified in a substantial way. Of course, one should formulate a 
'correspondence principle' connecting this generalised space-time structure 
with the known macroscopic geometry. All these arguments will b e discussed 
elsewhere. Here we have to be careful in constructing a general scheme which 
does not prejudge the solution of these problems. 

A short discussion is also required on the concept of a physical system, 
which plays a fundamental role in the elementary quantum theory, as it 
permits the separation between the observer and the observed object. This 
concept becomes rather unclear in the domain of high energy elementary 
particles, because, starting with a given system of particles, one can produce, 
by means of physical operations involving a sufficient amount of energy, 
another arbitrary system of particles (together with the corresponding anti- 
particles). It is then convenient to replace, in the above-mentioned role, the 
concept of a physical system by the concept of a space-time region. 

From a macroscopic point of view (i.e. disregarding microscopic details) 
a situation defines a space-time region containing the points which can be 
reached by a signal leaving the objects forming the situation after the origin 
of the time scale. The experiments performed in the given situation can 
explore only tbAs region of  space-time. We see that a situation, besides defin- 
ing a frame of reference, specifies also the part of the physical world which 
plays the role of the observed system. Therefore, an independently defined 
concept of a physical system is not necessary any more. 

Another class of dangerous idealisations concerns the physical objects 
which are used for the transmission and the storage of information. For 
instance, it is dangerous to assume that a measurement can be performed in 
a bounded space-time region, as the physical objects which transmit the 
result could undergo an interaction outside this region. This point is very 
delicate if the space-time region is microscopic, as in this case the objects 
which transmit the information are necessarily microscopic, at least initially. 
We have not analysed these difficulties in detail, but we shall indicate the 
points where they could be relevant. 

After the formalisation given by yon Neumann (1932) of the general 
scheme of quantum mechanics, many generalisations and modifications have 
been proposed. One of the aims of these investigations was to formulate the 
basic assumptions separating, as clearly as possible, the assumptions which 
have a direct and natural physical justification from the assumptions which 
are peculiar of quantum mechanics and are justified only indirectly by its 
success. Considering only the first class of assumptions, we get a class of 
formalism which we call 'general quantum theories' (Giles, 1970; Birkhoff 
& yon Neumann, 1936; Segal, 1947; Mackey, 1963; Haag & Kastler, 1964; 
Jauch, 1968; Varadarajan, 1968; Ludwig, 1970). The formalism described in 
the present paper is of this kind. 
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In the historical evolution of  quantum theories one can observe a shift of 
attention from very idealised kinds of procedures to more and more realistic 
ones. It is our purpose to proceed in this direction. For instance, the measure- 
ment procedures, i.~e. the procedures which have the purpose of giving a 
numerical result, were first described by means of the idealised concept of 
observable corresponding to a self-adjoint operator (von Neumann, 1932). 
Much later it was pointed out that not all the self-adjoint operators represent 
observables, due to the existence of superselection rules (Wick, Wightman & 
Wigner, 1952). In the framework of relativistic quantum theory, a further step 
has been the remark that every experiment has to be performed in a bounded 
spacetime region and, therefore, only operators belonging to certain local algebras 
can represent physical observables (Haag & Kastler, 1964; Haag, 1958). These 
specifications and restrictions of the set of  physical observables give rise to a 
more accurate description of the microscopic phenomena and increase the 
physical content of the theory. 

It has also been remarked that the observables with an infinite spectrum 
represent an idealisation, because the actual measurement procedures always 
have a finite set of possible results. Most of the modern formulations of 
general quantum theory consider only observables with two possible results, 
called propositions (Birkhoff & yon Neumann, 1936; Jauch, 1968), 
questions (Mackey, 1963), decision effects (Ludwig, 1970) or pure tests 
(Giles, 1970). In the usual quantum theory (yon Neumann, 1932) they are 
represented by means of projection operators. 

The next step is due to Ludwig (1970). Performing an analysis o f  the real 
measurement procedures, he has shown that the decision effects are a very 
special case of a more general kind of effects which can be represented by 
means of positive operators with norm not larger than one. Many measure- 
ment procedures with two possible results correspond to effects of the 
general kind. 

A deep analysis of these concepts has been given by Giles (1970), starting 
from an operational definition of the weighted mean of two effects (he calls 
them tests). The weighted mean of  two tests gives rise to a mixed test in the 
same way as the weighted mean of  two states gives rise to a mixed state. A 
mixed test describes a measurement procedure which contains some random 
choices. As these random choices can be used in order to simulate the experi- 
mental errors, the mixed tests can represent realistic measurement procedures, 
while the pure tests (namely the decision effects) have to be considered as 
idealised concepts.t We remember that the need for a mathematical formalism, 
taking deeply into account the experimental limitations of the accuracy of 
measurements, was stressed by Bridgman (1927). 

The specification of  the mixed tests which correspond to realistic measure- 
ment procedures leads to considerable enrichment of the theory, in particular 
it permits clear treatment of the topological properties of a physical system 
(Giles, 1970) (for instance, the number of degrees of freedom). This is by no 

t This problem is also shortly discussed in note 126 of yon Neumann (1932). 
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means unexpected: the deep connection between the concepts of  general 
topology and the approximate nature of  the experimental determinations 
has been discussed by Poincar6 (1902 1908). Similar ideas can be found in 
Bourbaki (1965). These considerations hold for both quantum and classical 
physics. 

The concept of  a mixed test has a fundamental role in the formalism we 
shall describe. In general, we shall define in Section 2 the weighted mean of 
procedures of an arbitrary kind. We shall consider measurement procedures 
with an arbitrary finite number of possible results, for in this way we shall 
be able to give, in Section 6, a completely general and satisfactory treatment 
of the compatibility of  measurements. 

Besides the measurement procedures, whose only aim is to find a numerical 
result, we consider also 'transformation procedures', with the aim of con- 
structing a situation. The transformation procedures transform the pre- 
existing situations into new situations and therefore they provide an 
operationally well-defined generalization of the inhomogeneous Lorentz 
transformations which act on the idealised frames of reference. This 
generalisation seems to be a promising starting point for a deep analysis of 
the concepts connected with the structure of  space-time. 

Another basic concept in almost all the approaches to quantum theory 
is the concept of  a physical state. A physical state is defined in terms of the 
procedure used to prepare it. A preparation procedure is assumed to have 
very peculiar properties: the probabilities of the results of any measurement 
procedure perfm[med after the preparation procedure are univocally deter- 
mined and do not depend, for instance, on what happened before the be- 
ginning of the preparation procedure. It is well known (Haag & Kastler, 
1964) that preparation procedures with this property cannot exist in 
relativistic quantum field theory. In general, the existence of preparation 
procedures is rather doubtful in any theory which deals with infinitely 
extended systems, as by performing a procedure one can control only a 
finite region of space. Even if we deal with a spatially bounded system, the 
condition which characterises a preparation procedure can hardly b e satisfied 
exactly. 

After these remarks, it is clear that the concepts of  a physical state or of  
a preparation procedure cannot be used as primitive concepts in our theory. 
In the usual approaches to quantum theory, the concept of  a preparation 
procedure is used in an essential way in order to formulate the empirical 
statistical laws of quantum physics. In fact these laws fix the probability 
(univocally defined) of  obtaining a given result if we perform a given measure- 
ment procedure after a given preparation procedure. It is also usual to call 
'equivalent' two measurement procedures if, when we perform them after the 
same arbitrary preparation procedure, we get the same results with the same 
probabilities. 

In our formalism we avoid completely the use of  preparation procedures 
and of physical states and we formulate the empirical statistical taws of the 
theory directly by means of an order relation defined in the set of the 
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measurement procedures with two possible results. In Section 3 we give a 
direct operational definition of this order relation and we discuss its proper- 
ties in detail. Starting from the order relation, we define also an equivalence 
relation between measurement procedures with an arbitrary number of poss- 
ible results. 

In order to test experimentally the order relation between two measure- 
ment procedures, we have to perform these procedures a large number of 
times in different situations. Therefore, we have to assume that one can 
build an arbitrary number of  situations in such a way that experiments per- 
formed in these different situations do not disturb each other. We say that 
these situations are sufficiently separated in space-time. This is an unavoidable 
preliminary assumption about space-time. We remark that it has a large- 
distance asymptotic character and it does not prejudge the microscopic 
structure of  space-time. 

In Sections 4-7 we give a mathematical elaboration of the concepts 
operationally defined in the preceding sections. In particular, we shall con- 
sider equivalence classes of  measurement procedures and of  transformation 
procedures, which we call, respectively, 'measurements' and 'transformations'. 
In the current physical theories, these equivalence classes, and not the pro- 
cedures themselves, are represented by means of mathematical objects (for 
instance by operators). 

We define some algebraic operations involving measurements and trans- 
formations and, in this way, we obtain an algebraic structure. This mathe- 
matical structure is, in general, considerably more complicated than the one 
which appears in the usual theories. We get essential simplifications if we 
extend this structure by introducing some new 'ideal' measurements and 
transformations which do not correspond to any known procedure. In 
Section 7 we remark that ideal objects of  this kind are present in all physical 
theories and that they play an essential role in the development of  physics. 

It is important to note that in the present paper we analyse only part of  
the basic concepts of a microscopic physical theory and, as a consequence, 
the general scheme that we propose is still too poor for a reasonably com- 
plete formulation of elementary particle physics. For instance, in order to 
treat a scattering process, one should consider measurement procedures com- 
posed of simpler measurement procedures performed in distant regions of 
space-time. We think that it is expedient to analyse first the concepts treated 
in the present paper. 

2. Measurement Procedures and Transformation Procedures 

By 'procedure' we mean a set of well-defined prescriptions, described in a 
document,t according to which the experimenter performs some physical or 

It is evident that this document is meaningful only within a given linguistic and 
technological context. It follows that a deeper discussion of this matter could not be 
confined to the domain of physical sciences. 
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mathematical operations which permit him to attain certain well-defined 
aims. We shall distinguish different 'kinds' of  procedures according to the 
aims to be attained. In order to reduce, as far as possible, the difficulties 
connected with the complex and insufficiently known structure o f  the 
experimenter, the most delicate operations should be performed by means of  
automatic instruments. The document mentioned above should give instructions 
for constructing these instruments. 

The following remarks are essential. 

(a) If, following the prescriptions of  two different documents, one 
necessarily performs the same physical and mathematical operations, 
the two documents define the same procedure. We shall also consider 
as equal two procedures which differ in some details when these 
details are known to be irrelevant on the basis o f  weU-established 
theories. 

(b) The prescriptions must be formulated in such a way that their aims 
are always attained. In particular, they should never imply infinite 
sets of  operations. 

(c) The prescriptions defining a procedure necessarily refer to some pre- 
existent material objects. Some o f  these objects define a local frame 
of  reference and others form a device producing an event which 
defines the time zero.t We say that these material objects form a 
'situation'. The operational prescriptions for the construction of  a 
situation will be discussed, in a preliminary way, at the end of  this 
section. A set o f  operations actually performed following a given 
procedure and using a given situation will be called an 'experiment' .  

A procedure in general requires some preparatory operations to 
be performed much in advance with respect to the time zero of  the 
situation, for instance in order to prepare some instruments or to 
identify the objects which form the situation. A detailed description 
o f  all these operations seems to involve insurmountable difficulties, 
but it is not essential for the formulation o f  a microscopic theory. 
For instance, the identification o f  the objects which form a situation 
should consist of  successive approximations, starting from the identifi- 
cation of  some macroscopic objects which every situation must con- 
tain. This first step is a problem of  macroscopic physics, which does 
not need detailed discussion in our context. 

(d) We assume that it is possible to perform operations which permit us 
to choose an integer belonging to the set 

Ap=(0 ,  1 . . . . .  p - -  1} (2.1) 

t Standards of mass, length, etc. are not necessary, as nature itself provides natural 
units. If we disregard violations of charge conjugation symmetry, a specimen of positive 
charge is necessary in order to distinguish between charges of different sign. 
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in a random way, according to the given probabilities a o . . . . .  ap_ 1. 
Of course, we must have 

ar ~> 0, r = 0 , . . . ,  p - 1 (2.2) 
p--1  

ar = 1 (2.3) 
r=O 

A procedure may contain prescriptions for physical operations which 
can possibly be interpreted as random choices, but can produce 
physical effects in many uncontrollable ways. On the contrary, the 
idealised random choices we are considering can have physical con- 
sequences only through their outcome and do not interfere materially 
with the other physical operations. We call them 'formal' random 
choices. Our assumptions are justified if we require that the formal 
random choices are performed long before the other physical opera- 
tions. They can be obtained by means of classical devices and the 
details of the physical operations involved are irrelevant. Therefore, 
we shall consider as equal two procedures which differ from the 
practical realisation of  the formal random choices. 

(e) The prescriptions which define a procedure may contain conditional 
sentences, which prescribe a given operation only if a preceding 
operation has given a certain result, for instance if a formal random 
choice has given a certain outcome. If an operation is conditioned by 
an event which is logically impossible, or is generated by a formal 
random choice with zero probability, the document obtained from 
the original one by eliminating the corresponding prescriptions 
defines the same procedure. 

The operation of 'weighted mean' defined in Giles (1970) can easily be 
extended to a finite set of procedures of the same type. We indicate by (~ 
the set of  the procedures of  a given kind treated by a given theory. Given p 
procedures A ( ° ) , . . . ,  A(p-1) belonging to (~ and the real numbers a o , . . . ,  
ap_l satisfying conditions (2.2) and (2.3), we can define the new procedure 

P- - I  

A = ~ ar A(r) =ao A(°) + . . .  +ap-1A(p-O E(~ (2.4) 
r=O 

by means of the following prescription. 

Prescription: Choose the integer r E Ap, by means of a formal random 
choice, according to the probabilities a o . . . .  , ap_ 1 . Then perform the pro- 
cedure A(r). It is clear that in this way the required aims are attained. 

It follows from the remarks given that a different ordering of the pro- 
cedures A(r) and of the coefficients a r is irrelevant for the definition of 
procedure (2.4). It is also clear that, if for a given r we have ar = 0, the 
corresponding term can be eliminated in expression (2.4) without attering 
its meaning. For p = 1, we have: 

1A = A (2.5) 
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We say that a procedure is 'simple' if it does not contain formal random 
choices. Given a procedure A, all the formal random choices contained in it 
can be replaced, using the rules of  probability theory, by a single random 
choice. The procedure A can then be written in the form (2.4), where the 
coefficients a r are positive and the procedures A (r) are simple and each one 
different from the other. This decomposition is unique (up to the order of  
the various terms). 

It follows that the set f# can be considered as a convex set in the linear 
space of all the formal finite linear combinations of simple procedures 
belonging toN. The operation of weighted mean, physically defined above, 
has the usual mathematical meaning and the usual formal properties. In other 
words, one can work with the expressions of type (2.4) by means of the 
usual rules of linear algebra. It is convenient to consider the affine manifold c~ 
generated by the convex set(~. The affine space~ contains all the affine 
combinations of  elements of(~, but only affine combinations with positive 
coefficients can be physically interpreted as weiglated means. 

We now consider some special kinds of procedures. By 'measurement 
procedure' we mean a procedure, the aim of which is to choose a 'result' in 
a given set of possible results. All the remarks given above are particularly 
valid for this kind of procedure. In or, der to satisfy remark (b), it is sufficient 
to give a last prescription, specifying the result to be chosen when some of 
the other prescriptions cannot be accomplished due to some unexpected 
difficulty.? The following additional remarks are also essential. 

(0 

(g) 

An analysis of  the actual experimental procedures shows that the set 
of  possible results is necessarily finite. We call d~n the set of  the 
measurement procedures with n possible results considered by our 
theory. We assume that the set of possible results has the form A n 
(see equation (2.1)). The set d~l is composed of all the trivial measure- 
ment procedures which give 'a priort" the only possible result, namely 
0. As explained above, the set gn can be considered as a convex set 
contained in an affine space ~n. 
A measurement procedure may require some mathematical operations 
which transform some preliminary results into the final result. Of 
course, in practice these mathematical operations are performed by 
means of physical operations; however, in analogy with remark (d), 
given above, we assume that they have no relevant physical effect 
and that they do not interfere with other physical operations. This 
idealisation is justified assuming that these mathematical operations 
are performed a long time after the other physical operations. The 
details of  the physical operations required are irrelevant for our 
purposes. 

The measurement procedures described in Giles (1970) can produce, besides the 
two normal possible outcomes, the signal 'experiment void'. According to our con- 
ventions, we consider these three possible results on an equal footing and we assign 
these measurement procedures to the set ¢ 3. 
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Note, however, that the physical objects which carry the information 
which forms the result of a measurement procedure are by no means irrelevant 
in all steps of  the procedure itself. They become irrelevant only when they 
assume a clearly macroscopic nature, as an electric signal in a computer or 
a sheet of  printed paper. 

Besides the weighted mean, we shall define another statistical relation 
between measurement procedures. We consider the set o[[mn composed of all 
the real matrices ¢ik with m rows and n columns which satisfy the conditions: 

~ik >~O, i = O , . . . , m - 1 ,  k=O . . . . .  n - 1  (2.6) 

m-1 
¢ik = 1, k = 0 , . . . , n -  1 (2.7) 

i=O 
A matrix with these properties will be called a 'probability matrix'.Jt'rnn is a 
convex compact set in the (m - 1) n dimensional affine space,A'mn of all the 
real m x n matrices which satisfy condition (2.7). Moreover, we have: 

~pp' E~dmn if ~o EJlrns, ~' EJ[sn (2.8) 

If  ~ E~[mn arid A E ~n, we can define the new measurement procedure 

~A Ed~m (2.9) 

by means of the following prescription. 

Prescription: For each integer k E A n we choose, by means of a formal 
random choice, an integer i(k) E 2x m using the probabilities ~oik. We then 
perform the measurement procedure A. If  the result is k, we choose, as the 
result of the measurement procedure ~0A, the integer i(k). 

Note that this prescription is in agreement with remark (d). We call ~A a 
'statistical alteration' of  the measurement procedure A. This is a generalisation 
of the usual definition of a function of an observable ('con Neumann, 1932). 

We indicate by t the element of  d~l defined by the simple prescription: 
'the result is 0'. A measurement procedure of the kind 

( i°n-1 ) IE°~'n (2 .10)  

is simply a random choice of the result according to the probabilities 
a o , . . . ,  an-l .  In particular, we shall consider the measurement procedures 

o:(0), 
belonging to N2, which give, 'a priori ~, the result 0 and 1 respectively. 

It follows from remarks (d) and (g) and from the rules of  probability 
theory that the operation of statistical alteration has the following properties 

8A =A (2.12) 
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where 5 is the unit matrix with the appropriate dimension, 

:(~'A ) = (::')A 

( E a,~:(r))( E bsA (s)) = E a, bs(~o(r)A (s)) 
p s F s  

359 

(2.~3) 

(2.14) 

In fact, the measurement procedures connected by the equality sign differ 
only by the practical details of  some mathematical operations or of some 
formal random choices. In order to save space, we have not written the con- 
ditions of  validity explicitly; we understand that these equalities hold when- 
ever the operations involved are well defined. 

We now define another kind of procedure, which we call 'transformation 
procedures'. Their aim is to construct a situation. We remember that a 
situation is a set of  material objects which indicate the spaceAime con- 
ditions in which the operations prescribed by a procedure have to be per- 
formed. We call o~the set of the transformation procedures considered by 
our theory. ~-can be considered as a convex set in the affine space ~ .  

The remarks (a)-(e), given above, also hold for the transformation pro- 
cedures. In particular, the prescriptions which define a transformation 
procedure necessarily refer to some pre-existent material objects which form 
another situation. Following the prescriptions of the transformation pro- 
cedure, one transforms one situation into another new situation. We see that 
only relations between situations, and not the situations themselves, have a 
direct operational meaning. The concept of situation will not appear in our 
mathematical formalism. 

According to remark (b), the prescriptions defining a transformation pro- 
cedure must be formulated in such a way that, following them, one always 
succeeds in building a situation. This requirement is, necessarily, somewhat 
obscure, as we have not yet decided explicitly which kind of material objects 
can form a situation. These details have to be specified carefully in each 
particular theory. 

I fA E d~n and F E  ~ ,  we can define the measurement procedure AFE gn, 
called the 'composition' of  A and F by means of the following prescription. 

Prescription: tn order to perform the procedure AF in a given situation, 
one has to perform the operations of  F using the given situation and the 
operations of  A using the situation constructed by F. The result of  A obtained 
in this way is the result of AF. 

We remember that, according to remark (b) given above, the procedure A 
must contain some rules prescribing alternative operations whenever a pre- 
scription of A and a prescription of F are in contradiction. This requirement 
gives rise to difficult problems, but it seems to be unavoidable. It should be 
clear, after what we have said, that one cannot avoid these problems requir- 
ing that every operation of A has to be performed after the operations ofF.  

In a perfectly similar way, if G, F E  ~ ,  we can define their composition 
GFE~.  
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Usingremarks(d)and(~ ,  we can easflyjustifythefollowingequalit~s, 
which hold whenevertheoperationsinvolved are meaningfuh 

(AF)G=A(FG) 

(FG)H = F(GH) 

( ~ arA(r))( ~ bs F(s)) = ~. arbs(A(r)F (s)) 
r S FS 

p S ~S 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(~A)F = ~(AF) (2.19) 

The letter A, with or without indices, denotes measurement procedures and 
the letters F, G, H, with or without indices, denote transformation procedures. 

For the mathematical development of  the concepts introduced above, it is 
useful to remark that the operatign of statistical alteration can be extended 
to an affine mapping Of~mn x ~n int°~'m" In a similar way, the operations of 
co mpgsitioncan be extended to affine mappings ofd ~ n x ~ i n t o  ~n and of 
~ x  ~ i n t o  ~ .  These extensions can be obtained by means of the proposition 
proved in the Appendix. 

The concepts of a frame of reference and of a transformation of  the 
Poincar~ group,? which appear in relativistic theories, can be considered as 
idealisations of  the concepts of  situation and of transformation procedure. 
We think that an operational approach to the structure of  space-time should 
be based on the analysis of the transformation procedures. 

We remark, however, that a transformation procedure is not just a 
generalised change of reference. It implies physical operations which may 
affect the material objects under investigation. We shall see in Section 5 
that the transformation procedures can also be used to generalise and replace 
the preparation procedures which should define the physical states. 

3. An Order Relation Between Measurement Procedures of ~2 

The formalism described in the preceding section can be considered as a 
scheme for the classification of experimental techniques. Now we want to 
complete this scheme in order to include the formulation of  the statistical 
physical laws which connect the results of  the experiments. We achieve this 
end by introducing a relation, denoted by the sign ~<, between the elements 
of the set g2. We have to explain how the statement A ~<B can be tested 
experimentally. 

As we have anticipated in the Introduction, we need the following 
assumption. 

t More exactly, one should consider the semigroup generated by the homogeneous 
orthochronous Lorentz transformations and by the space-time translations b elonging to 
the future cone. Only the elements of this semigroup have a direct operational meaning 
in macroscopic physics. 
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Assumption: Given a finite set i f  o f  procedures and an integer N, one 
can build a set o f  N situations in such a way that it is possible to perform, in 
e~ch of  the N situations, an arbitrarily chosen procedure o f  the set ~ .  This 
means that, putting together all the prescriptions corresponding to the pro- 
cedures to be performed in the N situations, we obtain a set of  prescriptions 
free of  ambiguities and contradictions. 

Practically, one has to choose the N situations sufficiently separated in 
space-time. Note that the separation required depends on the nature o f  the 
procedures contained in the set gf.  A set of  situations which satisfies these 
conditions will be called an 'ensemble o f  situations' suitable for the set 3¢ ~ 
of  procedures. 

Of course, in order to build an ensemble of  situations, one has to  perform 
certain operations following some set o f  prescriptions which form a new kind 
of  procedure. As these operations have a classical macroscopic nature, we 
shall not  discuss this kind of  procedure further. It is important to remark 
that two ensembles of  situations built by means of  the same procedure can- 
not be considered as equal or equivalent in any sense. 

Note that we are not assuming that the result o f  a measurement pro- 
cedure is not influenced by the fact that other (N - 1) procedures are per- 
formed. It is rather difficult to give a clear operational meaning to this 
assumption and it does not seem to be necessary for our purpose. We think, 
however, that this point should be analysed with more detail. 

It follows from our definition that we can always enlarge the set Y i n  such 
a way that we have 

[ ~ arA (r) E Y and a s > 0] ~ [A (s) E~(~ ~] (3.1) 
Y 

[~pA E~g '~] ~ [A E~"]  (3.2) 

A finite number M of  'equivalent' ensembles of  situations can be obtained 
considering one ensemble o f  situations and decomposing it into M parts in a 
perfectly random way. Of course, these random choices have to be performed 
much in advance. 

I f S  is an ensemble o f  situations suitable for a set 9~fcontaining the measure- 
ment procedure A E #n ,  we can perform A in all the situations o f  S and we 
indicate by P(A, S, i) the frequency of  the result i E A n . Of course, we have 

P(A, S, t) ~>0, i=  0 , . . . ,  n -  1, (3.3) 

n--1 

P(A, S,/) = 1 (3.4) 
i=0 

It is important to note that it would not be correct to consider the 
quantity P(A, S, i), for fixed S and i, as a function o fA  def'med in d' n. In 
fact, the ensemble of  situations S cannot be reproduced at vdll, and for a 
fixed S the quantity P can be measured only for one single measurement 
procedure A. 
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By applying the rules of probability theory to the random choices which 
have to be performed in order to construct equivalent ensembles of  situa- 
tions, or which are required by the prescriptions which define the measure- 
ment procedures, we get the following results. If S, S', S(°), SO), . . .  are 
equivalent ensembles of situations suitable for the set ~¢fcontaining the 
relevant procedures, we have (whenever these expressions are meaningful) 

P(A, S, t) .~ P(A, S', i) (3.5) 

P(~ ar A(r), S, 0 "~ ~ arP(A(r), s(r), i) (3.6) 
P r 

P(¢A, S, 0 ~ Z ¢ikP( A, S', k) (3.7) 
k 

Here, and in the following, we indica$.e by ~ and < , respectively, the equality 
and the inequality of two real quantities within the expected statistical 
fluctuations. 

In order to test the relation A ~< B between the measurement procedures 
A and B, both belonging to #2 ,  we build two equivalent ensembles of 
situations S and S', both suitable for a set ~ o f  measurement procedures 
containing A and B. We then perform A in all the situations of S, and B in 
all the situations of S', and we require that 

P(A, S, 1) < P(B, S', 1) (3.8) 

Of course, this test has to be repeated for many pairs of equivalent ensembles 
of situations, as large and various as possible. 

We remark (Popper, 1935, 1959) that, as in any other physical law, the 
relation A <~B cannot be proved experimentally. It can be disproved in a 
statistical sense if, performing a test of  the kind described above, the 
inequality (3.8) is contradicted well beyond the expected statistical fluctua- 
tions. We find here the unavoidable conceptual difficulties connected with 
testing a statistical law. 

We now have to discuss a serious objection to the approach described 
above. Assume that, using two equivalent ensembles of  situations S and S',  
we have found that the inequality (3.8) is false. As the ensembles of  situa- 
tions are not reproducible at will, another physicist has no possibility of 
performing an independent test on our result. This result can be attributed 
to some mistake or to some exceptionally large statistical fluctuation and 
cannot be considered as an objective disproof of the statement A <~ B. 

It follows that our theory has a rather unsatisfactory degree of objectivity. 
The considerations which follow give a partial solution to this problem. We 
shall show in Section 5 that in the usual theories, based on the concept of 
state, the problem is hidden but no less serious. 

I fA is a measurement procedure, F is a transformation procedure and S 
is an ensemble of situations suitable for the measurement procedure AT', 
applying F to all the situations of S we get a new ensemble of situations 



A GENERAL SCHEME FOR MICROSCOPIC THEORIES 3 6 3  

which we indicate by FS. The ensemble FS is suitable for the measurement 
procedure A and we can write 

P(A, FS, i) = P(AF, S, 0 (3.9) 

because these two quantities are measured by means of the same set of  
experiments. 

It follows that i fA ~<B and S, S' are equivalent ensembles of situations 
we have 

P(AF, S, 1) < P(BF, S', 1) (3.10) 

Therefore we can write: 

[.4<~B] ~ [AF<~BF], A , B E g  2 (3.11) 

The most effective way of disproving the relationA ~<B is to use an ensemble 
of situations expressly prepared by means of operations which are believed to 
be particularly suitable for this aim. For instance, one can use an ensemble of 
the form FS where Fis  a suitably chosen transformation procedure. In this 
way, one tests the relation A ~< B through its consequence AF <~ BF. 

An objective refutation of the relationA ~<B can be given by finding a trans- 
formation procedure F such that the inequality (3.10) is clearly false for any 
pair of equivalent ensembles of situations sufficiently numerous for dis- 
regarding the statistical fluctuations. 

This possibility of  objective disproof increases the degree of objectivity 
of the theory, but the situation is not yet completely satisfactory. In fact, 
we cannot exclude the embarrassing case in which the relation A <~ B has been 
disproved occasionally but no objective disproof has been found. 

Summarising, a theory of the type we are considering is given by: 

(a) The sets gn and ~ the elements of which are physically interpreted 
as procedures of the kinds described in the preceding section. 

(b) The operations of  weighted mean, statistical alteration and composi- 
tion, which have the physical interpretation and the properties 
explained in the preceding section. 

(c) The relation ~< defined in the set ~2, which is the only kind of state- 
ment of the theory which is subject to experimental tests, as explained 
above. 

A physical theory of this kind is valid if the physical interpretations of all 
these concepts are operationally well defined and if the relation ~< is not dis- 
proved by experiment. 

We remark that, in this framework, the time evolution laws can be ex- 
pressed by means of relations of the form AF < B, where A and B belong to 
g2 and F is a transformation procedure which can be interpreted as a trans- 
lation in time. 

Physical theories are subject to a continuous evolution. In the scheme 
described above, improvements of the following kinds may be introduced. 
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(a) The sets ~n and ~ 'are  enlarged in order to take into account the 
progress of the experimental techniques. 

(b) Some relations of the type A ~<B have to be eliminated, because they 
have been contradicted by experiments. 

(c) Some new relations of the kind A ~< B are assumed and, after having 
been successfully submitted to a large number of suitably chosen 
experimental tests, they are provisionally accepted as true. In this way, 
one increases the physical content of  the theory. 

We stress that the relation < cannot be induced once and for ever from 
experiments, but it has to be assumed as a somewhat arbitrary hypothesis to 
be controlled experimentally. 

It should be clear that the current physical theories have not the idealised 
structure described above. In particular, as we shall see in Section 7, a 
detailed list of the procedures considered by the theory is never available. 
Also the historical development of  physics cannot be understood correctly 
by means of  the oversimplified scheme given above. In general, the relation 
<~ is described mathematically in terms of other mathematical structures 
which have a less direct operational meaning, but can more easily be defined 
and treated mathematically. We say that they form the 'mathematical model' 
of the theory. Often one can assign an intuitive physical meaning to some 
terms appearing in the mathematical model and, in this way, one gets a 
physical model. In many cases the change in the relation ~< which corresponds 
to an improvement of the theory implies a radical change of the mathe- 
matical model. This essential aspect of the development of the physical 
theories is not discussed here. 

In the formulation of an hypothesis concerning the relation ~< it is con- 
venient to take into account some consequences of the laws of probability 
theory which are contained in equations (3.5)-(3.7). We shall always assume 
that the relation ~ has the following seven properties: 

O < A  -<< U, A E@ 2 (3.t2) 

(~)E~O, U<(°l)E, E E # I  (3.t3) 

A ~<A (3.14) 

[A (r)<~B ( r ) , r = 0  . . . . .  n - l ]  ~ [ ~ a r A  (r)< ~arB (r)] (3.15) 
r r 

[A < C a n d  C<~B] ~ [A <B]  (3.16) 

[0 < a < 1 and C-<< D and aA + (1 - a)D <~ aB + (1 - a)C] ~ [A -<< B] 
(3.17) 

[ A ~ < ( 1 - a ) B + a C f o r 0 < a < l ]  ~ [A<~B] (3.I8) 

It is understood that these formulae hold whenever the expressions con- 
tained by them are well defined. 

We easily see that the first two equations can never be disproved experi- 
mentally. Equation (3.14) is justified by equation (3.5). In order to justify 
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equation (3.15), we remark that when we test the relation in the second 
square bracket, using the equivalent ensembles of  situations S and S '  we can 
also consider the 2n ensembles of  situations S(r) and S '(r) equivalent to S 
and S'. From equation (3.1) it follows that all these ensembles of  situations 
are suitable for all the measurement procedures A(r) and B(r) , therefore we 
can use them to test the relations A(r) <~ B(r). I f  these relations are not con- 
tradicted we obtain 

P(A (r) , S (r), 1) < P(B (r), S '(r), 1), r = O , . . . ,  n - 1 (3 . t9)  

Using equation (3.6) twice we finally obtain 

P(~ arA(r),s, 1) ~< P ( ~  arB(r),s ', 1) (3.20) 
r /- 

i n  accordance with the relation we wanted to test. 
The assumptions (3.16)-(3.18) are more difficult to justify. In fact, when 

we test the relation A < B  by means o f  the equivalent ensembles o f  situations 
S and S', we can also build other ensembles of  situations equivalent to S and 
S', but we cannot be sure that they are suitable for the measurement pro- 
cedures C and D. I f  we disregard this difficulty, the assumptions (3.16)-(3.18) 
can be justified in the same way as the preceding one. A complete clarifica- 
tion of  this point would require a deeper analysis o f  the concept o f  ensemble 
of  situations. 

Equations (3.14) and (3.16) mean that <~ is an order relation (in general, 
non-antisymmetric).  Equations (3. t 5) and (3.17) can be used to extend this 
order relation to the whole affine space doz- It is convenient to transform 
g2  i n toa  linear space by choosing the origin in the point O. We can then use 
the following proposition: 

Proposition 1 : I f  6°2 is a convex set in a vector space ~2  and ~< is an order 
relation defined in do2 with the properties (3.15) and (3.17), it is always 
possible to define an order relation on do2 (compatible with its structure of  
vector space (Jameson, 1970)) which, when restricted to g2 ,  coincides with 
the order relation previously given. 

Proof: We consider the cone d o ÷ composed of  all the vectors of  the form 

C=a(B-A) ,  a>~O, A, BEd~2 A <~B (3.21) 

This cone is convex. In fact, if  we consider another element 

C'=a'(B' -  A'), a' >/O, A',B' ~do2, A' <~B' (3.22) 

of  d o+ , we have 

c ÷ c '  = (a + a ' )  (B" - A" )  (3.23)  
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A" = a. 'A + - -  

[ B" = a~ B + a~a ' + a' (3.24) 

From equation (3.15) we see that A" ~< B" and therefore we have C + C ' E  g÷. 
We show that ifA,B E 82, we have 

[B - A E 8 +] ~* [,4 ~<B] (3.25) 

It is clear that the first statement follows from the second. If the second 
statement is true, we can write 

B - A  =a(B'- A'), a>~O, A',B' E~2, A' <~B' (3.26) 

and therefore 

a B' 1 a A' A + . . . .  B + (3.27) 
a + l  a + l  a + l  a + l  

and, using equation (3.17), we get A ~<B. 
In conclusion, we can use equation (3.25) in order to define the order 

relation in the whole space ~ 2 and the proposition is proved. 
From the order relation ~< we can derive an equivalence relation in the 

usual way: 

[A=B] ¢, [A <~BandB<~A] (3.28) 

This equivalence relation is compatible with the linear structure of ~2- 
From equations (3.12) and (3.13) we get 

(~)E-O, (°)E=- U, E E e l  (3.29) 

It is easy to show that these formulae also hold for E E  ~1- IfA E ~  2 and we 
put 

E=(1  1 ) A E g  I (3.30) 

we have 

and with our choice of the origin in ~2, 

(~ Io) A =- U-  A (3.32) 

As the linear space oP 2 is generated by the convex set 82, every element 
CE  o~2 can be written in the form 

C = all - bB, a, b t> 0, A, B E 82 (3.33) 
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It follows that 
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- b U  <~ C <~ aU (3.34) 

This means that  the element U is an order unit (Jameson,  1970). 
From equation (3.18) it follows that the ordering of  ~2 is archimedean, 

namely we have (Jameson, 1970): 

[C<~aUfora>O] ~ [C<~O]. (3.35) 

In fact, if we put 

C = c(A - B), c > O, A,  B E 42, 2B ~ U (3.36) 

from the first statement of  equation (3.35) we obtain 

A < ~ - - U + B < ~ 2 - - U +  t - 2  B (3.37) 
C C 

and from equation (3.18) we get A ~<B and therefore C ~< O. 
In order to define an equivalence relation in the spaces Okn, with n ~ 2, we 

define the probability matrices ~(nr) ~..t[2 n in the following way: 

~%r) =6rtc ' ¢(0~ r) = 1 - 6 r k  , k = 0 , . . . , n  - 1 (3.38) 

Then i fA  and B belong to ~n ,  we define the equivalence relation A -=B as 
follows: 

[A - B ]  ~ [~(nr)A =- ff("r)B, r = 0 . . . .  , n - 1] (3.39) 

Using equation (3.32) we see that  this formula is also true for n = 2. From 
equation (3.29) we see that, according to our definition, all the elements of  
g t are equivalent to one another. 

Using equation (2.14), we easily see that this equivalence relation is com- 
patible with the structure of  affine space of ten .  Moreover, using the identity 

¢(ms)q 0 = 2 ~Osr ¢(nr) + (1 - -  2 ~sr) (1 . . .  1 ) ,  ~ C~mn 
r = o  r = o  

(3.40) 

we can easily show that 

[A --B] * [~¢A - tpB]  (3.4t)  

We now consider equation (3.11). One can easily show that it can be 
extended to the case in which A, B E ~2- From this equation it follows: 

[A - B] > [ A F -  BF], F E o~ (3.42) 

Using equations (2.19) and (3.39), we see that this equation holds also for 
A , B  E o~n. 
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4. The Mathematical Structure o f  Measurements 

In the present section we commence a mathematical investigation of the 
concepts and of the assumptions discussed in Sections 2 and 3. 

As the equivalence relation introduced in the preceding section is com- 
patible with the affine structure of the spaces d ~ n, we can introduce the 
quotient affine spaces ~n .  An element of  ~n  is a set of  equivalent elements 
of ~ n- If  the equivalence class A E ~ n  contains at least a measurement pro- 
cedure A E 8n, we say that it is a 'measurement'. We indicate by O~n the set 
of all the measurements contained in ~n. g n  is a convex set in the affine 
space ~ n. We can also consider a measurement as a set of  equivalent measure- 
ment procedures. The measurements of  ~2, which play a special role in the 
formalism we are describing, will also be called 'tests' (Giles, 1970). 

The space ~2  also has a structure of  ordered linear space and it is easy to 
show that the ordering is antisymmetric and archimedean (Jameson, 1970). 
We indicate by O and U the tests which contain O and U respectively. They 
contain all the measurement procedures of  ~2 which always (but not necess- 
arily 'a priori') give the result 0 and 1 respectively. O is the zero element of 
the space N2 and Uis an order unit of the same space. The space ~ 1 contains 
only one element which we indicate by I. 

Equation (3.41) means that the equivalence relation is compatible with 
the operation of statistical alteration. It follows that we can define, in a 
natural way, an affine mapping off'Iron X O~n into the space ~m, which we 
again call statistical alteration. I fA  E gn  and ~o E.~mn , we have ~oA E gin. 
In particular we have: 

It is useful to summarise the geometric properties of  the set ~ 2 in the 
following proposition: 

Proposition 2 : ~ 2  is a convex set in the ordered linear space ~2 .  It con- 
ta{ns the elements O and U, it is symmetric with respect to the reflection 

A ~ U -  A (4.3) 

and has the property 

O ~< N2 ~< U (4.4) 

From equation (3.39) we have: 

[A = B] ~ [$(nr)A = qJ(nr)B, r = 0 . . . . .  n - 1 ]  (4.5) 

A , B ~ ,  
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In other words, the element A ~ ~n is uniquely determined by the n elements 

Ar = ~(nOA E ~2, r = 0 , . . . ,  n - 1 (4.6) 

which we call the 'components' of  A. We shall use the notation: 

A = [Ao,A 1 . . . . .  A n - l ]  E ~n (4.7) 

In particular, we have: 

A = [ U - A , A ]  ~ o~2 (4.8) 

1 = [U] (4.9) 

The operations of weighted mean and of statistical alteration can be 
expressed in terms of components in the following way. 

Proposition 3: We have: 

~atc[A(~), , ( k )  1 = [Ao, , A n - i I  (4.10) • • . . , Z a n _ l J  . . .  
k 

where 

and 

where 

ar  = E akA~ k), r = 0 . . . .  , n - 1 (4.11) 
k 

¢[Ao, .  .. , A n - l ]  = [ B o , . . -  ,Bm- t ] ,  ~ e ~ m n  (4.12) 

Bs = ~. ¢srAr (4.13) 
r 

Proof.- The first result follows immediately from definition (4.6) of the 
component. Using the identity (3.40), we get the formula: 

g s = ~(ms)~a = ~ ~sr~4r + (1 - ~ ~sr)O (4.14) 
r r 

which coincides, with equation (4.13), with our choice of  the origin in ~2.  
The following proposition shows that the structure of all the spaces ~n 

is uniquely determined by the structure of  the space ~2 .  

Proposition 4: The equation (4.6) permits us to identify the space ~ n  
with the affine space of all the sequences [A o, • • •, An- l ]  of elements of  
o~2 which satisfy the condition 

n - - 1  

Z A, = u (4.15) 
r =  0 

Condition (4.15) follows from the definition (4.6) and from the P r o o f . "  

identity 

r=o n 2 ' - - 2 - \ o ]  ( 1 . . .  1) (4.16) 
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In order to prove that all sequences of  this kind define an element of O~n, we 
consider the following elements of  gn :  

B 0 = I = [U, O . . . .  , O] 

B1 = .. A1 = [ U -  A1,A 1, O , . . . ,  O] ( 4 . 1 7 )  

Bn_ 1 = .. An_ l  = [ U -  A n _ I ,  O . . . . .  O, An_l] 

Then, using equation (4.15), we obtain: 

[ A 0 , . . .  , A n - l ]  = ( 2 -  n)B  o +B 1 + . . .  + B n - 1 E ~ n  (4.18) 

It is important to note that the sets of measurements gn are not deter- 
mined univocalty by the set 82. Their structure contains independent 
physical information. The following proposition gives a limitation to the 
extension of the sets gn- 

Proposition 5: The components Ar of a measurement A E gn satisfy the 
condition 

afAr E t~ 2 (4.19) 
r 

for any choice of  the numbers ar such that 

0 ~ ar ~< 1, r = 0 . . . . .  n - 1 (4.20) 

We remark that, as 82 is convex, it is sufficient to impose condition (4.19) 
with the restriction that the coefficients a r can take only the values 0 and 1. 

Proof: We just have to apply Proposition 3 to the relation 

1 - a 0 . . .  1 - an_l] A E ~2 ( 4 . 2 1 )  
CI 0 (ln--1] 

Summarising, we have translated the relations between measurement pro- 
cedures into relations between the corresponding measurements. In this way 
we obtain a separation of problems which correspond roughly to the distinction 
between experimental and theoretical physics. The first class of  problems 
deals with the description of the measurement procedures and their assign- 
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ment to the appropriate measurement; the second class of problems deals with 
the mathematical relations between measurements. 

We have described these relations in terms of a mathematical structure, 
which we call the 'structure of  measurements'. It is composed of the following 
elements: 

(a) The ordered linear space ~2 with antisymmetric and archimedean 
ordering, with the positive cone ~+ and with the order unit U As 
explained in Propositions 3 and 4, starting from these elements one 
can construct the affine spaces ~n ,  with n = I,  3, 4 , . . . .  and define 
the operation of statistical alteration. 

(b) The convex sets ~n which contain the measurements. The set 6' 2 
must have the properties required by Proposition 2. The other sets 
~n must be chosen in such a way that the statistical alteration of a 
measurement is a measurement. In particular they must satisfy the 
condition of Proposition 5. 

If the set o~2 is given, a simple consistenfl way of defining the other sets 
~n is to assign to o~n all the elements of 6~n which satisfy the condition of 
Proposition 5. It is easy to show that with this definition the operation of 
statistical alteration maps~.//mn x 6~n into $m. If  the sets ~n are defined in 
this way, we say that the structure of  measurements is 'full'. 

If  the ordered linear space ~ 2 is given, ~ simple consistent way of defining 
the set/~2 is to put 

6~2 = g~+ (3 ( U -  $+) (4.22) 
namely 

[A E ~2] "*> [O ~<A < U] (4.23) 

If the set R2 is defined in this way, we say that the structure of measure- 
ments is 'conical'. 

It is easy to show that if a structure of measurements is both full and 
conical, the sets o~n are defined by the conditions 

Ar t> O, r = 0 . . . .  n - t (4.24) 
In this case the structure of measurements is uniquely determined by the 
ordered linear space o~2 with order unit U. 

There is no general physical justification for assuming that the structure 
of measurements is full or conical. However, the full conical structure of 
measurements generated by the ordered linear space ~ 2 can be obtained 
from the original structure of measurements introducing some new 'ideal' 
measurements which do not correspond to any known measurement pro- 
cedure. The introduction of 'extended' structures of measurements of this 
kind will be discussed in Section 7. 

In any case, a great deal of important information on physical theory is 
contained in the structure of  the ordered linear space g*2- The approach to 
general quantum theory in terms of ordered linear space has been proposed 
and developed by several authors (Giles, 1970; Ludwig, 1970; Wick, Wightman 
& Wigner, 1974). 
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It is useful to introduce in the space~ 2 the following order unit seminorm: 

IIA II = inf[c: - c U < . A  <<.cU] (4.25) 

As the ordering o f ~  2 is antisymmetric and archimedean, this seminorm is 
indeed a norm and the positive cone ~* is closed with respect to the norm 
topology (Jameson, 1970). 

In order to clarify the physical meaning of this norm, we consider two 
tests A and B containing the measurement procedures A and B. From tile 
inequality 

- c U  <~A - B <~cU (4.26) 

it follows 

i c ! B c O+ - - A  < U+ (4.27) 
l + c  l + c  l + c  l + c  

c f__ O + 1 B ~ c U + 1__:_ A (4.28) 
1 + c  1 + c  1 + c  l + c  

If S and S'  are two equivalent ensembles of situations, we get from 
equation (4.27) 

1 P(A,S, 1) < c + - -  P(B,S ' ,  1) (4.29) 
l + c  l + c  l + c  

Using also equation (4.28) and equation (4.25) we finally obtain 

IP(A,S,  1 ) - P ( B , S ' ,  1)[ < I IA-B[I  (4.30) 

We see that it is very difficult to prove the inequivalence of the two measure- 
ment procedures A and B if I t A -  Bll is very small.  

We can also introduce a topology in the spaces Nn by means of the 
distance 

d ( h , B )  = sup llA r - Brll (4.31) 
O <~r<~ n - - 1  

One can easily see that with this topology the operation of statistical altera- 
tion is continuous. 

We say that the structure of  measurements is 'complete' if  the space ~2 is 
complete and all the sets £n are closed. In this case all the spaces ~ n and all 
the sets ~n are complete. One can always get a complete structure of measure- 
ments taking the completion of the space £2 and the closure of  the positive 
cone £+ and of  the sets £n.  Of course, in this completion procedure, one 
introduces new 'ideal' measurements which do not correspond to any known 
measurement procedure. 

5. The Mathematical Structure o f  Transformations 

In this section we continue the mathematical investigation initiated in the 
preceding section, taking the transformation procedures into account. 
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Equation (3.42) shows that the equivalence relation is compatible with 
the operation of composition. It follows that a transformation procedure 
F E  o~defines (for each integer n/> 1) an affine mapping of ~n into itself 
which maps the set o~n into itself. We indicate these mappings by F and we 
use the notation 

A F = A F E ~ n ,  A E ~  n (5.1) 

From equation (2.19) we have: 

(~oA)F = ~o(AF) (5.2) 

and from equation (4.6) we obtain: 

[ A o , . . .  , A n - t ] F  = [AoF, . . . .  An_IF]  (5.3) 

We see that the mapping F of ~ 2 into itself determines uniquely the mapping 
of ~n into itself for arbitr~y n. 

The affine mappings o fN  2 into itself which correspond to transformation 
procedures will be called 'transformations' and we indicate b y , t h e  set of 
all the transformations of our theory. A transformation can also be con- 
sidered as a set of  'equivalent' transformation procedures. 

Clearly, we have 

I F = I  (5.4) 

and, from equation (5.2) 

OF = 0 (5.5) 

UF = U (5.6) 

From equation (3.1 t)  we see that a transformation is a monotonic mapping 
ofo~ 2 into itsetf. We remember that a monotonic linear operator is bounded 
with respect to an order unit norm. 

In conclusion, we have: 

Proposition 6: The transformations are monotonic linear operators in the 
ordered linear space ~ 2 which map ~2 into itself and have the property 
(5.6). They form a convex set ~ i n  the space of  the bounded linear operators 
in ~2 .  The operator product of two transformations is a transformation. 

The concepts introduced above permit a clear discussion of  the concept 
of state. A 'mathematical state' is a positive linear functional X defined on 
the space ~ 2 with the property 

x(U) = I (5.7) 

A mathematical state X will be called a 'physical state' if there is a trans- 
formation F of the form: 

A F  = x(A)U, A @ ~z  (5.8) 
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I f F  is a transformation procedure corresponding to F from equation (3.9) 
we get 

P(A, FS, 1) -- P(AF, S, 1) ~ x(A), A E g2 (5.9) 

and using equations (3.7) and (4.6) we obtain 

P(B, FS, 0 ~ x(Bi), B E 'C n (5.I0) 

We see that if we perform an arbitrary measurement procedure B in the 
ensemble FS, the probability of obtaining the result i does not depend on 
the initial ensemble of situations S. By means of the transformation pro- 
cedure F w e  have been able to prepare, in a reproducible way, an ensemble 
of sffuations FS which provides a physical realisation of the mathematical 
state X. 

As we have explained in the Introduction, a procedure involves only a 
bounded region of the infinitely extended physical space. Consider the 
measurement procedure A performed after the transformation procedure F. 
If A lasts sufficiently long, it can be influenced by physical events which 
occur in a distant region and which cannot therefore be controlled by F. It 
follows that F cannot prepare a state in the sense explained above. In other 
words, the set o~cannot contain elements of the form (5.8), namely trans- 
formations with one-dimensional range. 

We have discussed the concept of  physical state, even if we believe that 
physical states do not exist, because many approaches to quantum theory 
are based on this concept. In these treatments the statistical physical laws are 
expressed by a function p(A, F) which gives the probability of obtaining the 
result 1 when we perform the measurement procedure A E ~2 on a state 
prepared by means of the transformation procedure F. With our notation, 
this means: 

p(A,F)~-, P(AF, S, 1) (5.11) 

The order relation between measurement procedures is defined in terms of  
this function: the statement A < B  means that 

p(A, F) <~p(B, F) (5.12) 

for all the preparation procedures F. 
This approach seems to avoid the difficulties we have found in Section 3 

in defining the order relation with a sufficient degree of objectivity. In fact, 
the fundamental quantity p(A, F) can be measured with an arbitrary accuracy 
by several experimenters in a reproducible way (if we disregard exceptional 
statistical fluctuations). 

However, this advantage is illusory. Even if we forget our doubts about 
the existence of physical states and of preparation procedures, we have to 
remark that the function p(A, F) does not contain all the empirical statements 
of the theory. Also the preliminary statement that F is a preparation pro- 
cedure has a clearly empirical character and requires experimental verification. 
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Using our language, one has to test that the quantity (5.11) does not depend 
on S. It is clear that this test implies the same difficulties that we have found 
in Section 3 in our direct definition of the order relation. 

In conclusion, we remark that both the physical states and the inhomo- 
geneous Lorentz transformations appear in our approach as different idealisa- 
tions of the concept of transformation. We remember that concepts previously 
distinct are expected to become interlaced and confused when we extend our 
field of  experience (Bridgman, 1927). 

6. Compatibi l i ty  o f  Measurernents 

We think that the usual concept of compatibility between measurements 
is rather accurately described by the following definitions. 

Definitions: A set ~ of  measurements is called 'compatible' if, given any 
finite subset {AO) . . . . .  A (n)} of  ~, there is a measurement C such that all 
the measurements A (1) . . . . .  A (n) are statistical alterations of  C, namely they 
can be written in the form: 

A (r) = ~p(r)c, r = 1 . . . . .  n (6.1) 

If the measurement C can always be found in the set ~ ,  we say that ~ is 
'internally compatible'. A compatible set is called 'maximal' if it is not 
strictly contained in another compatible set. A set of  measurement pro- 
cedures is called compatible if the set composed of the corresponding 
measurements is compatible. 

Two warnings are perhaps useful: 

(a) Compatibility is not a binary relation: a set of pairwise compatible 
measurements is not necessarily compatible. 

(b) The notion of compatibility should not be confused with the notion 
of joint feasibility. A set of  procedures is called 'jointly feasible' if all 
of  them can be performed in the same situation, or, more precisely, 
if putting together the corresponding prescriptions we obtain a set of 
prescriptions free of contradiction and ambiguity. A compatible set 
of measurement procedures is not necessarily jointly feasible. 

Using Zorn's lemma, we see that every compatible set is contained in a 
maximal compatible set. It is clear that ifa3 is a compatible set, adding to 
a weighted mean of elements of  N or a statistical alteration of  an element of 
¢q, we obtain another compatible set. 

We say that a set N of measurements is a 'substructure' of the structure 
of measurements if it is closed with respect to the operations of weighted 
mean and of statistical alteration. In conclusion, we have the following result. 

Proposition 7: A maximal compatible set is a substructure. Every com- 
patible set is contained in a maximal compatible substructure. 

The following proposition shows that we can always assume that the 
matrices ~(r) which appear in equation (6.1) have a simple form. 
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Proposition 8: The two measurements A E ~m and B E ~n are com- 
patible if and only if there is an element C E  8mn such that: 

n-1 
A i = k~=O Cin+k 

m - - 1  

ak = Y G.+k 
i = 0  

(6.2) 

Proof." Due to our definition of compatibility, there is an element D E gop 
with the property 

A = ~oD (6.3) 

B = ¢'D 

Then equation (6.2) holds if we put 

p - - 1  

C i n + k  = 
r=O 

namely 

~Oir~/xrDr (6.4) 

C = ¢"D (6.5) 

where the probability matrix ~0" E . ~  ¢ mn, p is defined by 
r! ~-. t 

¢in+X,r •irCkr (6.6) 

If  the whole structure of measurements is compatible, it is also internally 
compatible. The characterisation of the compatible structures of  measure- 
ments is a complicated problem which we shall not discuss in detail. It is 
possible to find simple examples of compatible structures which are neither 
conical nor full. The following proposition gives a characterisation of the 
compatible conical full structures of  measurements. 

Proposition 9: The conical full structure of measurements generated by 
the ordered linear space ~ 2 is compatible if and only if the following con- 
dition is satisfied: Given two sets {1t o, . . . ,  A re_l} and {B o . . . . .  Bn_ l }  of 
positive vectors with the property 

Ar = ~ Br = U (6.7) 
r r 

one can find a set of  positive vectors {Co . . . . .  Cmn- 1 } in such a way that 
equations (6.2) are satisfied. 

Proof." According to Proposition 8, the condition given above is equivalent 
to the requirement that all the pairs of measurements are compatible. Then 
one can show, by induction, that an arbitrary finite set of  measurements is 
compatible. 
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This proposition permits us to give some interesting sufficient (but not 
necessary), conditions for the compatibility of  a full conical structure of  
measurements. 

(a) The space ~ 2  is an ordered algebra with unit U. This means that ~2  
is both an ordered linear space and a real algebra and that the product 
of two positive elements is positive. In this case we have just to put 

Cin+k = AiBk (6.8) 

As shown in Jameson (1970), this algebra is necessarily commutative 
and it is isomorphic to a dense subalgebra of the algebra of  the con- 
tinuous functions defined on a compact topological space P. 

(b) The ordered linear space ~2 is a Riesz space, namely, whenever we 
have 

A,B<~C,D (6.9) 

one can find an element E with the property 

A,B<~E<.C,D (6.10) 

In this case, the condition of Proposition 9 is satisfied, as shown in 
Jameson (1970). 

(c) *if2 is a linear lattice, namely every pair of  elements has a least upper 
bound and a greatest lower bound. This is an interesting special case of  
condition (b), as a linear lattice isalso a Riesz space. Then, due to a theorem 
by Kakutani (Jameson, 1970), ~2  is isomorphic to a dense linear sub- 
lattice of the linear lattice of  all the continuous functions defined on 
a compact topological space F. The order unit U corresponds to the 
constant function equal to one. 

If the space ~ 2 is complete, conditions (a) and (c) are equivalent and ok2 
is isomorphic to the space of all the continuous functions defined in I ' .  A 
structure of  measurements of  this kind will be called 'classical' and the space 
F will be interpreted as a compactification of the 'phase space', as explained 
in detail in Giles (1970). 

7. Extended Structures of Measurements 

We have seen in Section 4 that the mathematical properties of  the 
structure of  measurements can be simplified by introducing some 'ideal' 
measurements which do not correspond to any measurement procedure. In 
this way we obtain an 'extension' of  the original structure of  measurements. 
We have shown how one can obtain full, conical and complete extensions. 
An extended structure of  measurements can contain important information 
on physical theory. A smaller extension contains more information than a 
larger one. 

In practice, it is not possible to give an explicit, detailed, list of  all the 
measurement procedures. Moreover, this list would change every day due to 
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the development of  the experimental techniques. As a consequence, it is not 
possible to work with theories completely free of ideal measurements. In 
other words, in theoretical physics, one has always to deal with extended 
structures of  measurements. 

The ideal measurements have a very important role in the development 
of physics, as they provide a motivation and a guide in developing new, more 
refined, measurement procedures. For instance, the assumption that a certain 
quantity can be measured with an arbitrary accuracy implies the introduction 
of a class of  ideal measurements. Some of  them may become physical 
measurements with the improvement of measurement techniques. 

It is important to remark that not all the extensions of  the structure of  
measurements are physically meaningful. In fact, one has to take into account 
the existence of transformations: it must be possible to define in a consistent 
way the action of all the transtbrmations on the ideal measurements. If  this 
condition is satisfied, we say that the extension is 'acceptable'. 

Proposition 10: The full conical structure generated by the ordered linear 
space o # 2 is an acceptable extension of the original structure of measurements. 

Proof" We have seen that a transformation is a monotonic linear operator 
in o ~ 2 with the property (5.6) (see Proposition 6). If  the structure of  measure- 
ments is full and conical, an operator of  this kind defines, through equation 
(5.3), for each value of n, a mapping of ~n into itself which has all the 
required formal properties. 

Proposition 11 : We consider the completion of  the space (~2 with respect 
to the order unit norm. The closure of  the cone ~+ in the completion of ~2 
defines in this space an antisymmetric and archimedean ordering. The ordered 
linear space defined in this way generates a complete conical full structure of  
measurements which is an acceptable extension of the original structure. 

Proof." As the transformations are continuous linear operators, they can 
be extended to the completion of o ~ 2. It is easy to show that these extended 
operators have all the required properties. 

These propositions show that, independently from the properties of  the 
set o~of the transformations, one is always allowed to consider a complete 
full and conical extended structure of  measurements. Practically all the 
current theories have structures of  measurements of this kind. 

I f  the set ~ ' ha s  suitable properties, one can introduce further extensions 
of the structure of measurements. In this way one can obtain theories with 
simpler formal properties, but this advantage is paid for by a loss of  physical 
information. 

We remark that the introduction of ideal measurements affect the defini- 
tion of compatibility. A set of  measurements which is not compatible in the 
original structure may become compatible in an extended structure. 

The considerations given in this section permit us to give a new formula- 
tion of  the problem 'hidden variables" (yon Neumann, 1932; Jauch, 1968; 
Capasso, Fortunato & Selleri, 1970). We say that a theory admits hidden 
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variables if its structure of measurements has a classical acceptable extension. 
One can easily show that every structure of  measurements has a classical 
extension, but it is not necessarily acceptable. This problem will be con- 
sidered elsewhere. 

Also, the problem o f justifying the Hilbert space formalism (yon Neumann, 
1932) or the algebraic formalism (Giles, 1970; Segal, 1947; Haag & Kastler, 
1964) of quantum mechanics can be formulated in a new way if one realises 
that these formalisms describe an extended structure of measurements. 

Following Giles (1970), we define a class of  structures of  measurements 
which contain both the classical structures and those suggested by usual 
quantum theory. 

Definition: A full conical structure of  measurements is called a 'C* 
structure' if the space ~2  is isomorphic to the space of the hermitean elements 
of a C* algebra, with the positive elements defined in the usual way. 

Then the special assumption which leads to the usual quantum theory 
can be formulated as follows: the structure of measurements has an accept- 
able C* extension. As a C* extension always exists, the essential point is that 
the extension has to be acceptable and we see that the set of transformations 
playan essential role. 

Also the set ~ o f  transformations can be extended by introducing 'ideal' 
transformations. Of course, the ideal transformations must also map the sets 
gn  into themselves. I f  the structure of  measurements is full and conical, we 
have only to require that the extended set o~is a set of  positive operators 
with the property (5.6), convex and closed with respect to the operator 
product. For instance, one is allowed to take the closure of  the set o ~ with 
respect to the uniform (norm) operator topology or to the strong operator 
topology. 

It is not unreasonable to assume that the strong closure of  J~'contains 
transformations with one-dimensional range of the type (5.8). These ideal 
transformations identify a mathematical state. 

In conclusion, we think that these considerations show that the most 
basic features of  a physical theory can be described in terms of the ordered 
linear space ~ 2 with antisymmetric archimedean ordering and with the order 
unit U and in terms of the convex set ,~ 'of  monotonic linear operators in g 2 
which transform U into itself. 
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Appendix 

Proposition." f~ and o~are affine spaces, ~ - N  is a convex subset of  
which generates it and a is a mapping of f# into if 'which has the property 

~( ~. arA(r)) = 2 ara(A (r)) (A.I) 
r g 
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where the coefficients ar satisfy equations (2.2) and (2.3). Then the mapping 
o~ can be extended univocally to an affine mapping o f  ~ into 

Proof." Every element o f  (# can be writ ten in the form: 

C = ( l + a ) A - a B ,  a>~O, A , B ,  E f ~  (A.2) 

We then have to put:  

a(C) = (1 + a)o~(A) - ao~(B) (A.3) 

I f  we also have 

C = ( I + a ' ) A ' - a ' B  ', a'>/O, A',B'~f9 (A.4) 
we can write 

! 

l + a  a' B ' -  l + a  A' a 
1 + a + ~  A + a' - - -  + - - B  (A.5) 

1 +a+ 1 + a + a '  1 + a + a '  

and from equation (A.1) we obtain 

(1 + a)o~(A ) - aa(B ) = (1 + a')a(A ') - a'a(B') (A.6) 

We see that our definit ion (A.3) does not depend on the choice o f  the repre- 
sentation (A.2). It is easy to show that  the extension of  o~ obtained in this 
way is an affine mapping. 
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